Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Отделение физики диэлектриков и полупроводников Лаборатория кинетических явлений в твердых телах при низких температурах

Денисов Дмитрий Васильевич

Научный доклад

Проявление особенностей сверхпроводящего состояния в электрических и магнитных свойствах твердого раствора (Pb_zSn_{1-z})_{1-x}In_xTe.

Специальность 1.3.8 – Физика конденсированного состояния

Санкт-Петербург 2023

Научный руководитель: Шамшур Дмитрий Владиленович,

доктор физико-математических наук, ведущий научный сотрудник лаборатории кинетических явлений В твердых телах при низких температурах, Федеральное государственное бюджетное учреждение науки «Физико-технический институт им. А.Ф. Иоффе Российской академии наук»

Рецензенты: Гасумянц Виталий Эдуардович,

доктор физико-математических наук, профессор, ФГАОУ ВО Санкт-Петербургский политехнический университет Петра Великого, профессор Высшей инженерно-физической школы

Зюзин Александр Юрьевич,

доктор физико-математических наук, главный научный сотрудник, заведующий сектором теории полупроводников и диэлектриков, Федеральное государственное бюджетное учреждение науки «Физико-технический институт им. А.Ф. Иоффе Российской академии наук»

Содержание

Общая характеристика работы 4
Актуальность темы 4
Цель и задачи работы 5
Научная новизна и практическая значимость работы 6
Методы исследования
Апробация работы9
Публикации9
Экспериментальные результаты и их обсуждение11
Введение11
Сверхпроводящее состояние и активационная проводимость в твердом растворе (Pb _z Sn _{1-z}) _{0.8} In _{0.2} Te13
Пик-эффект на магнитополевых зависимостях намагниченности m(H) $(Pb_zSn_{1-z})_{0.8}In_{0.2}Te$
Парамагнитный отклик на температурных зависимостях намагниченности m(T) (Pb _z Sn _{1-z}) _{0.8} In _{0.2} Te32
Заключение
Список литературы 40

Общая характеристика работы

Актуальность темы

Актуальность работы определяется выбором объекта исследования полупроводникового твердого раствора $(Pb_zSn_{1-z})_{1-x}In_xTe$, изменение содержания свинца Pb и индия In в котором позволяет в значительной степени управлять физическими свойствами соединения. Результаты магнитных и электрических свойств исследования $(Pb_zSn_{1-z})_{1-x}In_xTe$, работе, полученные данной предоставляют дополнительную В информацию о зонном спектре $(Pb_zSn_{1-z})_{1-x}In_xTe$, необходимую для развития теории глубоких примесных состояний в твердых растворах, их перестройки при внешних воздействиях И ИХ влияния на низкотемпературные электрические и магнитные свойства материала. В частности, в (Pb_zSn_{1-z})_{1-x}In_xTe может наблюдаться сверхпроводимость с температурой сверхпроводящего (СП) перехода в гелиевой области. В области составов твердого раствора, близкой к точке инверсии зон в зонном спектре, может наблюдаться влияние поверхностных свойств на проводимость материала, что характерно топологических ДЛЯ кристаллических изоляторов. Исследования, проведенные в данной работе, являются актуальными и новыми, так как предлагают комплексное экспериментальное изучение низкотемпературных электрических И магнитных свойств полупроводникового твердого раствора с относительно большим содержанием индия x = 0.2 (Pb_zSn_{1-z})_{0.8}In_{0.2}Te в широком диапазоне содержания свинца z = 0.1 - 0.9.

В ходе работы были исследованы температурные и магнитополевые зависимости удельного сопротивления $\rho(T, H)$ полупроводниковых твердых растворов (Pb_zSn_{1-z})_{0.8}In_{0.2}Te (z = 0.1 – 0.9). Был исследован низкотемпературный переход от сверхпроводящего к состоянию с экспоненциальным ростом сопротивления при понижении температуры T (переход сверхпроводник – «диэлектрик», СП-Д) в (Pb_zSn_{1-z})_{0.8}In_{0.2}Te, при

котором на фоне подавления объемной СП на зависимостях р(Т, Н) могут проявляться особенности, связанные с поверхностными явлениями, характерными для топологических кристаллических изоляторов. Также были получены данные высоких 0 по сравнению другими С полупроводниковыми соединениями (например, PbTe и SnTe) значениях критических параметрах $(Pb_z Sn_{1-z})_{1-x} In_x Te$ и их изменении, связанного со смещением примесной полосы E_{In} на фоне сплошного зонного спектра соединения. Были обнаружены и изучены особенности сверхпроводящего $(Pb_zSn_{1-z})_{1-x}In_xTe$ магнитополевых состояния В И температурных зависимостях намагниченности m(H, T), а именно пик-эффект И парамагнитный отклик в СП состоянии материала.

Цель и задачи работы

Целью работы было изучение низкотемпературных особенностей электрических и магнитных свойств полупроводникового твердого раствора (Pb_zSn_{1-z})_{1-x}In_xTe с большим содержанием In (x = 0.20) в широком диапазоне содержания свинца (z = 0.1 – 0.9).

В ходе исследования были решены следующие задачи:

1. Изучены температурные и магнитополевые зависимости удельного сопротивления $\rho(T, H)$ (Pb_zSn_{1-z})_{1-x}In_xTe x = 0.2 при изменении содержания свинца в твердом растворе в диапазоне $0.1 \le z \le 0.9$, определена область СП состояния материала и низкотемпературный переход СП – «диэлектрик» с увеличением количества свинца в твердом растворе.

2. Исследованы магнитополевые зависимости намагниченности m(H) твердого раствора (Pb_zSn_{1-z})_{0.8}In_{0.2}Te в СП области составов. Обнаружены и изучены особенности СП состояния твердого раствора в магнитном поле, связанные со сложным взаимодействием центров пиннинга с вихревой решеткой.

3. Изучены особенности СП состояния (Pb_zSn_{1-z})_{0.8}In₂Te на температурных зависимостях намагниченности m(T) при различных режимах измерений:

ZFC – охлаждения в нулевом магнитном поле, FCC – охлаждения в магнитном поле, FCH – нагрева в магнитном поле. В зависимостях m(T) (Pb_zSn_{1-z})_{0.8}In₂Te обнаружен и исследован парамагнитный отклик (парамагнитный эффект Мейснера (ПЭМ)), в том числе в режиме измерений ZFC.

Научная новизна и практическая значимость работы

Полупроводниковый твердый раствор (Pb_zSn_{1-z})_{1-x}In_xTe, выбранный в качестве объекта исследования, представляет интерес как с практической, так и с фундаментальной точки зрения, а изучением его физических свойств занимаются исследователи в российских и зарубежных научных центрах. Например, (Pb_zSn_{1-z})_{1-x}In_xTe может использоваться в качестве материала для изготовления приемников излучения в том числе TГц диапазона спектра. Фундаментальный интерес к твердому раствору обусловлен относительно высокими критическими параметрами СП состояния в гелиевом диапазоне температур, превышающими на порядок и более критические параметры для других полупроводниковых соединений. Особый интерес связан с принадлежностью материала к классу топологических кристаллических изоляторов.

Физические свойства $(Pb_{7}Sn_{1-7})_{1-x}In_{x}Te$ во многом определяются существованием примесной полосы квазилокальных состояний индия с высокой плотностью E_{In} и ее положением на фоне непрерывного зонного спектра соединения. Смещение E_{In} из зоны проводимости Pb_{1-x}In_xTe в валентную зону Sn_{1-x}In_xTe по мере увеличения количества свинца в $(Pb_zSn_{1-z})_{1-x}In_xTe$ приводит изменению проводимости К характера материала (долговременные релаксационные процессы при низких (ДРП), экспоненциальный рост сопротивления температурах с понижением температуры (Д), сверхпроводимость при гелиевых температурах (СП)).

В твердых растворах (Pb_zSn_{1-z})_{1-х} In_xTe , в которых E_{In} находится в зоне проводимости, наблюдаются долговременные релаксационные процессы неравновесных носителей заряда при температурах T < 20 K. Описанные выше материалы в диапазоне составов $z \ge 0.7$ перспективны для применения в качестве приемников излучения, т.к. при температурах T < 20 K в них наблюдается высокая фоточувствительность в ИК и TГц областях спектра.

В соединениях ($Pb_z Sn_{1-z}$)_{0.8} $In_{0.2}$ Te, в которых E_{In} расположен в валентной зоне, наблюдается СП с высокими для полупроводниковых соединений значениями критических параметров, достигающих максимальных значений в образце (Pb_{0.5}Sn_{0.5})_{0.8}In_{0.2}Te – критической температуры сверхпроводящего перехода $T_c \leq 4.1$ К и второго критического магнитного поля, экстраполированного к T = 0 K, $H_{c2}(0) \le 41$ кЭ. Ранее было установлено, что СП состояние $(Pb_zSn_{1-z})_{1-x}In_xTe$ с T_c в гелиевой области температур наблюдается при расположении E_F в пике плотности состояний на уровне индия. Изучение свойств СП состояния в низкотемпературных $(Pb_zSn_{1-z})_{1-x}In_xTe$, особенностей В частности, зависимостей температурных И магнитополевых намагниченности является важной задачей как для практического использования, так и с точки зрения фундаментальных исследований.

Особый интерес представляет изучение пик-эффекта В $(Pb_zSn_{1-z})_{0.8}In_{0.2}Te$ дополнительного максимума на зависимости намагниченности поля m(H), соответствующего OT магнитного критического тока в области, близкой возрастанию КО второму критическому полю H_{c2}, и парамагнитного отклика на зависимости m(T) в СП состоянии материала при понижении температуры $T < T_c$. Исследование пик-эффекта в $(Pb_zSn_{1-z})_{1-x}In_xTe$, обнаруженного также в высокотемпературных сверхпроводящих (BTCII) традиционных материалах (например, в семействе YBCO) является актуальной задачей, т.к. повышение критического тока I_c в больших (H ≥ 15 кЭ) магнитных

полях может расширить область потенциальных применений материала. Образцы (Pb_zSn_{1-z})_{1-x}In_xTe, в которых наблюдается СП переход ($z \le 0.5$) также могут быть использованы для разработки элементов криоэлектроники, работающих при гелиевых температурах.

В последние годы возник повышенный интерес к материалам, находящимся на тройной фазовой диаграмме системы (Sn, In, Pb)Te -Sn_{1-x}In_xTe и In_{1-x}Pb_xTe. Обладая температурой СП перехода, лежащей в гелиевой области $T_c < 5$ K, образцы с высоким содержанием индия рассматриваются как потенциальные кандидаты в топологические сверхпроводники. В свою очередь, в образцах (Pb_zSn_{1-z})_{1-x}In_xTe в области перехода между СП и диэлектрическим состоянием может наблюдаться проводимость (возможно, СП), связанная с поверхностными состояниями материала. Составы (Pb_zSn_{1-z})_{1-x}In_xTe, находящиеся в данной области, также представляют интерес как материалы, в которых проявляются свойства топологических кристаллических изоляторов.

Методы исследования

В ходе работы было использовано современное оборудование – универсальный измерительный комплекс QD PPMS-14 и установка He⁴ со специально написанным ПО, позволяющим оперативно управлять режимом съема и обработки экспериментальных данных.

 He^4 , Низкотемпературная установка включающая себя В электромагнит до 1 T, с использованием термоконтроллера LakeShore 340 и современных измерительных приборов Keithley 2000, EG&G instruments 7265 DSP Lock-in amplifier и интерфейсного модуля GPIB-USB2.0 82357В Agilent Technologies предоставляет возможность проводить измерения магнитосопротивления эффекта Холла И полуметаллов, полупроводниковых соединений и материалов с высоким сопротивлением (до 100 ГОм) в условиях поддержания и плавного изменения температуры

образца в диапазоне T = 1.3 К – 400 К с точностью выше 0.01 К при гелиевых температурах.

Установка Quantum Design PPMS-14 позволяет в автоматическом выполнять измерения температурных магнитополевых режиме И зависимостей электрических (сопротивление р(Т, Н)) и магнитных m(T, H), (намагниченность с использованием вибрационного магнетометра) характеристик изучаемых твердых растворов (Pb_zSn₁- $_{z}_{0.8}$ In_{0.2}Te в широком диапазоне температур T = 2 K – 300 K и магнитных полей H < 14 Т.

Апробация работы

Результаты научной деятельности по теме исследования были представлены в виде устных докладов на конференциях: Молодежная конференция по физике полупроводников «Зимняя школа 2023», Зеленогорск, 2023; VIII Всероссийский молодежный научный форум «Open Science 2021», Гатчина, 2021; Международная конференция «Фазовые переходы, критические И нелинейные явления В конденсированных средах», Махачкала, 2021; XVII Межгосударственная Конференция «Термоэлектрики и их применения – 2021» (ISCTA-2021), Санкт-Петербург, 2021; XXI Всероссийская молодежная конференция «Физика полупроводников и наноструктур, полупроводниковая опто- и наноэлектроника», Санкт-Петербург, 2019; VII Научно-практическая конференция с международным участием «Наука настоящего и будущего», Санкт-Петербург, 2019, и в виде постерных докладов на конференциях: XV Российская конференция по физике полупроводников, Нижний Новгород, 2022; Международная конференция «ФизикА.СПб», Санкт-Петербург, 2020: XXII Всероссийская «Физика молодежная конференция наноструктур, полупроводниковая полупроводников И опто-И наноэлектроника», Санкт-Петербург, 2020.

Публикации

Основные результаты исследований, представленных в научном докладе, изложены в 3 работах, представленных списком ниже:

1. Denisov D. V., Mikhailin N. Y., Rudominskiy A. E., Parfeniev R. V., Shamshur D. V. Activation conductivity and superconducting state in solid solutions $(Pb_2Sn_{1-z})_{0.8}In_{0.2}Te$, Physica C, **597**, 1354067 (2022)

2. Denisov D. V., Mikhailin N. Y., Shamshur D. V., Parfeniev R. V. Superconducting transition in resistivity and magnetization of the solid solution $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te$, Physica C, **579**, 1353755 (2020)

3. Denisov D. V., Mikhailin N. Y., Shamshur D. V., Parfeniev R. V. Paramagnetism on the temperature-magnetization dependences in a superconducting semiconductor solid solution $(Pb_zSn_{1-z})_{1-x}In_xTe$, J. Phys.: Conf. Ser., **1697** (2020)

Экспериментальные результаты и их обсуждение

Введение

Бинарные соединения PbTe и SnTe образуют непрерывный ряд полупроводниковых твердых растворов замещения Pb_zSn_{1-z}Te, в котором ширина запрещенной зоны E_g линейно меняется с содержанием свинца z. При уменьшении z происходит переход от прямого зонного спектра в PbTe $(z = 1, L_6$ - соответствует зоне проводимости, L_6^+ - валентной зоне) к обратному расположению термов (L_{6+} , L_{6-}) в SnTe (z = 0) с точкой инверсии ($E_g = 0$) при z = 0.65 [1]. Добавление In в твердый раствор Pb_zSn_1 . _zТе позволяет в значительной степени управлять физическими свойствами соединения [1, 2]. В Pb_{1-x}In_xTe индий образует полосу примесных состояний на фоне зоны проводимости шириной $\Delta E_{In} \sim 1$ мэВ, которая стабилизирует положение уровня Ферми электронов на уровне E_{In} ~ 70 мэВ (T = 4.2 K) от края зоны [2, 3, 4] (рис. 1). При температурах T < 20 K в наблюдаются (часы более) этом соединении долговременные И релаксационные процессы, связанные с возникновением барьера между зонными и примесными состояниями [5 – 8]. В другом бинарном соединении твердого раствора, SnTe:In, добавление индия приводит к образованию широкой $\Delta E_{In} \ge 100$ мэВ полосы примесных состояний, расположенной глубоко в валентной L-зоне E_{In} ≥ 300 мэВ [9, 10, 11] на фоне зоны тяжелых дырок (в Σ - точке зоны Бриллюэна) (рис. 1). Уровень химпотенциала Sn_{1-x}In_xTe стабилизирован пиком плотности состояний в примесной полосе квазилокальных состояний In с высокой плотностью уже при уровне легирования индием $N_{In} > 2$ ат % [2, 7, 8], обмен носителями между зонными и примесными состояниями характеризуется резонансным рассеянием, приводящем К возрастанию удельного сопротивления материала на 2 порядка и более по сравнению с нелегированным SnTe [4, 10]. Ранее в $Sn_{1-x}In_xTe$ был обнаружен переход в

сверхпроводящее (СП) состояние с $T_c = 2.4$ К при содержании индия x = 0.2 [11].

В $(Pb_zSn_{1-z})_{1-x}In_xTe$ при уменьшении содержания свинца z энергетическое положение примесной полосы индия смещается из L₆₋зоны проводимости теллурида свинца в валентную L₆₊-зону теллурида олова [10, 12, 13]. Отметим, что при фиксированном z положение полосы E_{In} в $(Pb_zSn_{1-z})_{1-x}In_xTe$ зависит также от содержания In [14], смещаясь в

глубину валентной зоны с ростом содержания индия х (рис. 1).

Рис. 1. Схематическое изображение зонной структуры полупроводниковых твердых растворов $(Pb_zSn_{1-z})_{1-x}In_xTe$ при изменении содержания свинца и индия в соединении [10, 14].

Было установлено, что твердые растворы $(Pb_zSn_{1-z})_{1-x}In_xTe$ при z < 0.6 и x > 0.02 также характеризуются переходом в СП состояние 2 рода с необычайно высокой для полупроводников со сравнимыми концентрациями носителей (p ~ 10^{21} см⁻³) критической температурой СП перехода $T_c \le 4.2$ K [10]. Необходимыми условиями подобного увеличения T_c являются нахождение уровня Ферми E_F в пределах примесной полосы E_{In} и расположение E_{In} в области дополнительного экстремума валентной зоны (Σ - зоны тяжелых дырок с высокой плотностью состояний) [10, 12]. Следует отметить, что параметры СП состояния близки в поликристаллических и монокристаллических образцах (Pb_zSn_{1-z})_{1-x}In_xTe с одинаковым составом [15, 16, 17]. Кроме того, при температурах ниже 30 К (Pb_zSn_{1-z})_{1-x}In_xTe может проявлять свойства топологического изолятора [15, 16].

Сверхпроводящее состояние и активационная проводимость в твердом растворе (Pb_zSn_{1-z})_{0.8}In_{0.2}Te

На рисунке 2а, б показана температурная зависимость удельного сопротивления $\rho(T)$ изученных образцов (Pb_zSn_{1-z})_{0.8} $In_{0.2}$ Te, $0.1 \le z \le 0.9$. Отчетливо видно, что по мере увеличения количества свинца z в твердом растворе характер зависимостей $\rho(T)$ принципиально меняется. Если в твердых растворах с $z \le 0.4$ наблюдается уменьшение сопротивления с понижением температуры (металлическая зависимость) с последующим переходом в СП состояние (рис. 2а), то образцы с $z \ge 0.5$ демонстрируют экспоненциальное возрастание $\rho(T)$ при уменьшении T (рис. 2б).

Рассмотрим зависимости $\rho(T)$ в образцах (Pb_zSn_{1-z})_{0.8}In_{0.2}Te c z \geq 0.5, в области экспоненциального возрастания сопротивления с понижением температуры. На рис. 3 представлены зависимости сопротивления ρ в логарифмическом масштабе от обратной температуры, на которых пунктиром выделены линейные участки, отражающие рост сопротивления в соответствии с формулой

$$\rho = \rho_0 \exp(E_A/kT) (1)$$

 E_A - энергия активации, k - постоянная Больцмана, ρ_0- значение ρ при T \rightarrow $\infty.$

Рис. 2а, б. Температурная зависимость удельного сопротивления в образцах $(Pb_zSn_{1-z})_{0.8}In_{0.2}$ Te с концентрацией свинца z = 0.1 - 0.4 (a) и z = 0.5 - 0.9 (б).

Рис. 3. Зависимости логарифма сопротивления (Pb_zSn_{1-z})_{0.8}In_{0.2}Te c z = 0.5 - 0.9 от обратной температуры. Пунктиром выделены линейные участки.

Рис. 4. Зависимость энергии активации на температурной зависимости сопротивления в соответствии с формулой (1) от содержания свинца в (Pb_zSn_{1-z})_{0.8}In_{0.2}Te.

Величина энергии активации, определенная в соответствии с (1), в зависимости от содержания свинца в исследованных образцах (Pb_zSn_{1-z})_{0.8}In_{0.2}Te приведена на рис. 4. Следует отметить, что E_a возрастает с ростом z вплоть до z = 0.8. Предполагается, что активационный барьер возникает между состояниями валентной зоны и примесной полосой In при z = 0.5 и увеличивается с ростом z. Максимальное значение E_a достигается, когда примесная полоса находится в области запрещенной зоны соединения (z = 0.8). При дальнейшем увеличении z уменьшение E_a определяется взаимодействием примесной полосы с зоной проводимости.

Ha 5 показаны температурные рис. зависимости удельного сопротивления $\rho(T)$ в образцах (Pb_zSn_{1-z})_{0.8}In_{0.2}Te с концентрацией свинца z = 0.1 - 0.5 в температурном интервале T = 2 K - 10 K. СП состояние при гелиевых температурах наблюдалось в (Pb_zSn_{1-z})_{0.8}In_{0.2}Te при содержании свинца $z \le 0.5$; критическая температура СП перехода T_c определялась из условия $\rho(T) = 0.5\rho_N$, где ρ_N – сопротивление в нормальном состоянии непосредственно перед падением с понижением температуры). С ростом количества свинца z в (Pb_zSn_{1-z})_{0.8}In_{0.2}Te температура СП перехода T_c твердого раствора увеличивается и достигает максимума T_c = 4.1 К в $(Pb_{0.5}Sn_{0.5})_{0.8}In_{0.2}Te$. Возрастание $T_c(z)$ может быть связано со смещением примесной полосы E_{In} к потолку зоны тяжелых дырок, увеличением плотности состояний примесной полосы индия и сужением примесной полосы с увеличением содержания свинца в твердом растворе.

На зависимостях $\rho(H)$ твердого раствора $(Pb_zSn_{1-z})_{0.8}In_{0.2}$ Те при температурах T < T_c наблюдалось разрушение СП состояния магнитным полем H, типичный вид которого показан на рис. 6а на примере $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}$ Те. Видно, как при понижении температуры T < T_c возрастает критическое магнитное поле H_{c2}, при котором образец переходит в нормальное состояние. На рис. 6б приведены температурные зависимости второго критического магнитного поля H_{c2}(T) для всех исследованных образцов, в которых был обнаружен переход в СП

состояние (критическое магнитное поле $H_{c2}(T)$ определялось из условия $\rho(H) = 0.5 \rho_N$).

Рис. 5. Температурная зависимость удельного сопротивления в $(Pb_zSn_{1-z})_{0.8}In_{0.2}Te$ с концентрацией свинца z = 0.1 - 0.5 в области СП перехода.

Рис. 6а, б. Магнитополевая зависимость сопротивления образца $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te$, T = 2 K - 3.8 K (a); зависимость второго критического магнитного поля H_{c2} от температуры в образцах $(Pb_zSn_{1-z})_{0.8}In_{0.2}Te$ с концентрацией свинца z = 0.1, 0.2, 0.3, 0.4 и 0.5 (б).

На рис. 7а, б для СП образцов (Pb_zSn_{1-z})_{0.8} $In_{0.2}$ Te с концентрацией свинца z = 0.1 - 0.5 показаны экспериментально полученные зависимости $T_c(z)$ и $H_{c2}(z, T \rightarrow 0)$, определенная в соответствии с формулой

$$H_{c2}(0) = 0.69 * T_c * dH/dT |_{T \to Tc} (2).$$

Там же приведены критические параметры СП перехода для твердых растворов (Pb_zSn_{1-z})_{0.95}In_{0.05}Te, полученные в работе [10]. Сравнение зависимостей будет проведено ниже.

Рис. 7а, б. Зависимость температуры СП перехода T_c (a) и второго критического магнитного поля $H_{c2}(0)$ (б) от содержания свинца z=0.1, 0.2, 0.3, 0.4 и 0.5 для соединений ($Pb_zSn_{1-z})_{0.8}In_{0.2}$ Te и ($Pb_zSn_{1-z})_{0.95}In_{0.05}$ Te [10].

Следует отметить, что в данной серии образцов (Pb_zSn_{1-z})_{0.8}In_{0.2}Te пороговое значение энергии активации E_a , при котором сохраняется переход в СП состояние $E_a = 0.7$ мэВ (образец ($Pb_{0.5}Sn_{0.5}$)_{0.8}In_{0.2}Te), хорошо согласуется со значением из работы [18], в которой рассматривалось влияние гидростатического сжатия на СП свойства твердого раствора ($Pb_{0.45}Sn_{0.55}$)_{0.95}In_{0.05}Te (включая возникновение СП-состояния). В [18] было показано, что сверхпроводимость твердого раствора при T > 1.4 К появляется, когда энергия активации дырок $E_a = 0.9$ мэВ становится меньше величины СП энергетической щели.

Можно предположить, что состояние с экспоненциальным ростом $(Pb_zSn_{1-z})_{0.8}In_{0.2}Te$ (z \geq 0.5) наблюдается сопротивления В при возникновении барьера между состояниями валентной зоны и примесной полосы квазилокальных состояний индия. Образцы (Pb_zSn_{1-z})_{0.8}In_{0.2}Te c «малым» содержанием свинца z ≤ 0.4 демонстрируют металлический ход сопротивления с понижением температуры и переходят в СП состояние при гелиевых температурах, при этом T_c и H_{c2} возрастают с ростом z (рис. 7а, б). T_c в (Pb_zSn_{1-z})_{0.8}In_{0.2}Te достигает максимума $T_c = 4.1$ К в образце z =0.5, в котором наблюдается активационный участок Е_А ~ 0.7 мэВ на зависимости $\rho(T)$ (рис. 3). В образцах ($Pb_zSn_{1-z})_{0.8}In_{0.2}Te$ с большим содержанием свинца z ≥ 0.6 энергия активации увеличивается с ростом z более чем на порядок (рис. 4), при этом СП состояние не наблюдается при T > 1.5 К. В отличие от «колоколообразной» зависимости T_c(z), установленной в [10] для твердого раствора (Pb_zSn_{1-z})_{0.95}In_{0.05}Te с относительно малым содержанием индия x = 0.05, в (Pb_zSn_{1-z})_{0.8}In_{0.2}Te наблюдается «скачкообразное» падение T_c(z) < 1.5 К в области составов z = 0.5 - 0.6.

Как отмечалось ранее [12, 14], для реализации СП состояния при гелиевых температурах в $Sn_{1-x}In_xTe$ и $(Pb_zSn_{1-z})_{1-x}In_xTe$ необходимо, чтобы уровень Ферми дырок E_F располагался в пределах примесной полосы индия E_{In} (максимальные T_c наблюдаются, когда E_F находится вблизи

середины примесной полосы с максимальной плотностью состояний N(0)). В валентной зоне указанных СП соединений E_{In} находится в области энергий дополнительного Σ -экстремума валентной зоны с высокой плотностью состояний, что обеспечивает эффективное обменное взаимодействие между зонными и примесными состояниями и приводит к наблюдаемому резонансному рассеянию носителей [10]. Именно эта ситуация и наблюдается в изученных нами образцах (Pb_zSn_{1-z})_{0.8}In_{0.2}Te (z = 0.1 – 0.4).

По мере увеличения количества свинца в соединении уровень индия сдвигается к потолку валентной зоны, что приводит к следующим эффектам:

I) Происходит перераспределение носителей между валентной зоной и уровнем In и, соответственно, изменение заполнения носителями примесной полосы квазилокальных состояний индия.

II) Полоса E_{In} постепенно выходит из Σ -экстремума, поскольку ее энергетическое положение существенно сильнее меняется с ростом z в твердом растворе [10], чем у Σ -зоны тяжелых дырок.

Можно предположить, что при относительно малом содержании In в твердом растворе (Pb_zSn_{1-z})_{0.95}In_{0.05}Te эффект I приводит к тому, что в зависимости $T_c(z)$ в (Pb_zSn_{1-z})_{0.95}In_{0.05}Te (рис. 7, а) наблюдается максимум при расположении E_F в максимуме плотности примесных состояний (или вблизи центра полосы примесных индиевых состояний). Соответственно, большее влияние степень заполнения полосы на оказывает перераспределение носителей зона – полоса квазилокальных состояний In зона. Аналогичные зависимости T_c(z) наблюдались в Sn_{1-x}In_xTe и $(Pb_{0.2}Sn_{0.8})_{0.95}In_{0.05}Te$ легировании дополнительной акцепторной при примесью, что позволяло изменять положение E_F в примесной полосе [11]. В рассматриваемом нами твердом растворе $(Pb_zSn_{1-z})_{0.8}In_{0.2}Te$ содержание In и, соответственно, число состояний в примесной полосе E_{In} относительно велико. Перераспределение носителей зона - примесь не

позволяет добиться полного заполнения E_{In} и, соответственно, уменьшения T_c в (Pb_zSn_{1-z})_{0.8}In_{0.2}Te при $z \le 0.5$. Основным (во влиянии на зависимость $T_c(z)$) становится эффект II. При постепенном выходе примесной полосы из Σ -экстремума, по-видимому, возникает барьер E_a между примесными и зонными состояниями, что приводит к подавлению СП в твердых растворах $z \ge 0.6$, в которых величина барьера больше величины СП щели.

Таким образом, смещение полосы E_{In} из валентной зоны $Sn_{1-x}In_xTe$ ($T_c < 2.5 \text{ K}$ [10]) к зоне проводимости $Pb_{1-x}In_xTe$ ($T_c < 0.4 \text{ K}$) с ростом $z \ge 0.6$ в твердом растворе (Pb_zSn_{1-z})_{0.8} $In_{0.2}Te$ сопровождается исчезновением перехода в СП состояние вплоть до T > 1.4 K. По мере выхода E_{In} из Σ -экстремума валентной зоны резонансное рассеяние должно ослабляться, примесная полоса сужается. Энергия активации носителей в примесную полосу квазилокальных состояний индия в (Pb_zSn_{1-z})_{0.8} $In_{0.2}Te$ достигает максимума, когда E_{In} находится в области запрещенной зоны соединения (образец (Pb_zSn_{1-z})_{0.8} $In_{0.2}Te$, z ~ 0.8). При дальнейшем увеличении z она определяется влиянием зоны проводимости материала.

Отметим, что в отличие от образцов твердого раствора с содержанием свинца z = 0.1 - 0.5, в которых на зависимости $\rho(T)$ и $\rho(H)$ наблюдается типичный переход в СП состояние (рис. 5), в образцах с $z \ge 0.6$ в области T < 4 К наблюдается частичное падение сопротивления с понижением T (рис. 8).

Рис. 8. Температурная зависимость удельного сопротивления в образцах $(Pb_zSn_{1-z})_{0.8}In_{0.2}Te$ с концентрацией свинца z = 0.6 - 0.9 в области температур 0.5 K < T < 10 K.

Рис. 9а, б, в. Магнитополевые зависимости сопротивления в $(Pb_zSn_{1-z})_{0.8}In_{0.2}Te$ с концентрацией свинца z = 0.5 (a), 0.6 (б), 0.7 (в) при T = 1.5 K – 4.2 K.

На рис. 9 приведены зависимости магнитосопротивления при различных T < 4.2 К в образцах ($Pb_z Sn_{1-z}$)_{0.8}In_{0.2}Te с содержанием свинца z = 0.5, 0.6 и 0.7. Характер резкого падения $\rho(T)$ с понижением температуры вплоть до $\rho \sim 0$ Ом*см в твердом растворе с содержанием свинца z = 0.5 (рис. 26), как и восстановление сопротивления до нормального значения в магнитном поле больше критического H_{c2} при данной температуре (рис. 9, а) подтверждают переход этого соединения в СП состояние при T = 4.1 К. В отличие от поведения $\rho(T)$ в (Pb_{0.5}Sn_{0.5})_{0.8}In_{0.2}Te, падение сопротивления с понижением температуры T < 4.2 К в образцах с z = 0.6 и 0.7 сильно растянуто по температуре и при T = 1.5 К наблюдается остаточное сопротивление $\rho > 0.1\rho_N$ (рис. 8). Зависимости $\rho(H)$ (рис. 9, б, в) для этих образцов имеют вид, характерный для структур с проводимостью по поверхностным состояниям: увеличение р с ростом магнитного поля под влиянием слабой антилокализации [15, 16]. Можно предположить, что вид зависимости $\rho(T)$ в (Pb_zSn_{1-z})_{0.8}In_{0.2}Te, z = 0.6, 0.7 при T < 4.2 K определяется в том числе и проводимостью по поверхностным состояниям, как это наблюдалось в соединении SmB₆ [19].

В ранее изученных поликристаллических образцах твердых растворов (Pb_zSn_{1-z})_{0.84}In_{0.16}Te (с меньшим содержанием индия x = 0.16) при содержании свинца $z \ge 0.6$ также наблюдалось некоторое уменьшение сопротивления твердых растворов при понижении температуры T < 4.2 K; эффект связывался с обогащением индием границ кристаллитов [20]. В любом случае, можно обоснованно предположить, что в образцах с $z \ge 0.6$ объемная сверхпроводимость отсутствует, в отличие от образца (Pb_{0.5}Sn_{0.5})_{0.8}In_{0.2}Te.

Пик-эффект на магнитополевых зависимостях намагниченности m(H) (Pb_zSn_{1-z})_{0.8}In_{0.2}Te

В данной части работы будут приведены результаты исследования магнитополевых зависимостей намагниченности m(H) образцов (Pb_zSn_{1-z})_{0.8}In_{0.2}Te, находящихся в СП области составов твердого раствора.

На рис. 10 на зависимости магнитного момента от магнитного поля m(H) наблюдается переход из нормального состояния в СП в образце $(Pb_{0.3}Sn_{0.7})_{0.8}In_{0.2}$ Te. В нормальном состоянии (T = 5 K) зависимость m(H) носит слабый диамагнитный характер. В СП состоянии (T = 2 K, 2.4 K, 2.8 K, 3 K) при H > H_{c1} наблюдается зависимость m(H) с гистерезисом, характерная для СП второго рода с сильным пиннингом и связанная с проникновением и захватом магнитного потока в объеме СП. Площадь петли гистерезиса растет с понижением температуры, как и критическое поле H_{c2} .

Рис. 10. Магнитополевая зависимость намагниченности $(Pb_{0.3}Sn_{0.7})_{0.8}In_{0.2}Te$ при различных температурах T = 2 - 5 K.

Рис. 11а, б. Магнитополевая зависимость намагниченности $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}$ Те при различных температурах T = 2 - 5 K (a), Пик-эффект на магнитополевой зависимости намагниченности $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}$ Те при различных температурах T = 2 - 2.8 K.

Было обнаружено, что увеличение содержания свинца в растворе z = 0.4, 0.5 приводит к тому, что помимо гистерезиса при H ~ 0 кЭ, на прямом и обратном ходу развертки магнитного поля, зависимости m(H) характеризуются дополнительным экстремумом при приближении ко второму критическому магнитному полю H_{c2} - пик-эффект. Зависимости m(H), характерные для образцов с пик-эффектом, представлены на рисунке 11 на примере образца (Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te.

Аналогично образцу $(Pb_{0.3}Sn_{0.7})_{0.8}In_{0.2}Te$, при переходе через T_c в образце $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}$ Те наблюдается гистерезис, связанный с захватом магнитного потока образцом (рис. 11а). Понижение температуры (рис. 11б) приводит к появлению более сложной петли гистерезиса m(H), связанной с появлением второго максимума сигнала |m|(H) в магнитных полях H ~ 12 - 20 кЭ при T ≤ 3 K, достигающего 6% (T = 2 K) от амплитуды петли гистерезиса при H ~ 0 Э. Явление, по-видимому, связано с установлением особого СП состояния в решетке вихрей потока вблизи H_{c2}, и по аналогии с другими материалами [21 - 23] рассматривается как пик-эффект в СП твердом растворе ($Pb_z Sn_{1-z}$)_{0.8}In_{0.2}Te. Отметим, что, например, для образцов $Sn_{0.62}In_{0.38}Te$ наблюдались схожие m(H)состава зависимости с гистерезисом, аналогичным гистерезису, наблюдавшемуся на наших зависимостях при Н ~ 0 Э, но пик-эффекта не было обнаружено вплоть до T = 1.4 K. [24]

Рассмотрим характерные особенности составов, в которых был обнаружен пик-эффект, на примере образца $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te$. При увеличении температуры от T = 2 K до T = 2.6 K качественный вид зависимости $(Pb_zSn_{1-z})_{0.8}In_{0.2}Te$ m(H) сохраняется, при этом площадь петли гистерезиса уменьшается и максимумы пик-эффекта на прямой и обратной ветвях смещаются в область меньших магнитных полей.

Из полученных в ходе выполнения данной работы из электрических ρ(T, H) и магнитных m(H, T) зависимостей, были получены следующие характеристики образца: критическое магнитное поле H_{c2}, полученное из электрических измерений, критическое магнитное поле H_{c2m}, полученное из измерений намагниченности, поле необратимости H_{irr}, поле максимума пик-эффекта H_{peak} и поле начала пик-эффекта H_{onset}.

Рис. 12. Критическое магнитное поле H_{c2} , полученное из электрических измерений, критическое магнитное поле H_{c2m} , полученное из магнитных измерений, поле необратимости H_{irr} , поле максимума пик-эффекта H_{peak} и поле начала пик-эффекта H_{onset} в образце ($Pb_{0.4}Sn_{0.6}$)_{0.8} $In_{0.2}$ Те в зависимости от температуры.

Критические параметры СП перехода определены в соответствии с [17], а именно: методикой, описанной В значения H_{peak} и Honset производной соответствуют нулям dm(H)/dH(рис. 13a), поле необратимости H_{irr}, определяется по появлению гистерезиса на обратной ветви m(H) (рис. 13б); поле H_{c2} определяется как поле, при котором зависимость m(H) совпадает с зависимостью для нормального состояния (рис. 13б).

Рис. 13а, б. Производная зависимости m(H) по полю при температуре 2 К для образца ($Pb_{0.4}Sn_{0.6}$)_{0.8} $In_{0.2}$ Te. Стрелками отмечены значения H_{peak} и H_{onset} при T = 2.2 K(a); зависимости m(H) при температурах 2.2 K и 2.4 K вблизи H_{c2} для образца ($Pb_{0.4}Sn_{0.6}$)_{0.8} $In_{0.2}$ Te. Стрелками отмечены значения H_{c2} и H_{irr} при T = 2.2 K (б).

Следует отметить, что значения критических параметров СП перехода T_c и H_{c2}, определенные из электрических и магнитных измерений, могут отличаться по величине. Это различие связано разными способами их определения: из зависимостей $\rho(T, H)$ они определяются на уровне $\rho =$ 0.5 р_N (р_N – сопротивление в нормальном состоянии), а из зависимостей m(T) величина T_c из-за своей зависимости от магнитного поля определяется либо в очень слабом поле (в мейснеровской фазе), либо из данных H_{c2m}(T), соответствующих полному вхождению магнитного поля в образец при температурах вблизи T_c. Также метод измерений отражается величине второго критического магнитного на поля. Так, В $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te H_{c2}(3.4 \text{ K}) = 6.5 \text{ к} Э_{.} в то время как H_{c2m}(3.4 \text{ K}) = 6.6 \text{ к} Э.$ Однако, как видно из рис. 12 и рис. 14, значения критических параметров СП перехода T_c и H_{c2}, полученные из электрических и магнитных измерений совпадают с хорошей точностью.

Рис. 14. Зависимость критической температуры СП перехода T_c для соединений (Pb_zSn_{1-z})_{0.8}In_{0.2}Te от содержания свинца z в твердом растворе.

Пик-эффект, обнаруженный нами в образцах ($Pb_{z}Sn_{1-z}$)_{0.8}In_{0.2}Te, ранее наблюдался в различных СП материалах, к примеру, в YBa₂Cu₄O₈ [21], Nb₃Sn [22], FeSe_{1-x}Te_x [23] и ряде других. Интерес к пик-эффекту вызван соответствующим возрастанием критического тока в области, близкой ко второму критическому полю H_{c2}. Предполагается, что при приближении к H_{c2} в определенный момент отсутствуют квантованные вихри (происходит их перекрытие), что приводит к уменьшению параметра взаимодействия вихрей с дефектами и наблюдается так называемое "смягчение" вихревой решетки. Данное предположение исследовано в работе [25], в которой на облученных (для возникновения дополнительных центров пиннинга) и необлученных нейтронами образцах NbSe₂, из оценки связей между соседними вихрями, количеством их ближайших соседей в вихревой решетке и плотностью дефектов, сопоставленными с данными о макроскопической плотности критического тока образцов, было установлено, что в области второго пика на зависимости т(H) наблюдается сильно разупорядоченная вихревая решетка, a В областях, гле макроскопический ток обращается в нуль, решетка оказывается хорошо упорядоченной В облученном образце близкой И К идеально упорядоченной в необлученном образце. Можно предположить, что исследуемые поликристаллические образцы (Pb_zSn_{1-z})_{0.8}In_{0.2}Te обладают большим количеством дефектов, и пик-эффект в материале реализуется при подстройке вихревой решетки к центрам пиннинга вблизи второго критического магнитного поля H_{c2}, что приводит к увеличению силы пиннинга и возрастанию критического тока в образце.

Парамагнитный отклик на температурных зависимостях намагниченности m(T) (Pb_zSn_{1-z})_{0.8}In_{0.2}Te

Также в работе были проведены исследования зависимостей намагниченности от температуры m(T), полученных при различных условиях измерения: в режимах охлаждения в нулевом магнитном поле

(ZFC), охлаждения во внешнем магнитном поле (FCC), нагрева во внешнем магнитном поле (FCW) в сверхпроводящих полупроводниковых твердых растворах (Pb_zSn_{1-z})_{0.8}In_{0.2}Te.

Рис. 15а, б. Температурная зависимость намагниченности $(Pb_{0.3}Sn_{0.7})_{0.8}In_{0.2}$ Те полученная при различных режимах измерения – ZFC, FCC, FCW при магнитном поле H = 1 кЭ (a); H = 4 кЭ (б).

На рис. 15 представлен характерный вид зависимостей m(T), полученных в режимах ZFC, FCC, FCW при различных магнитных полях

 $H = 1 \ \kappa \Im, H = 4 \ \kappa \Im$ на примере образца $(Pb_{0.3}Sn_{0.7})_{0.8}In_{0.2}Te$. Для твердых растворов, находящихся в СП области составов, на зависимостях m(T) в режиме ZFC наблюдалось характерное для сверхпроводников II рода уменьшение диамагнитного отклика образца с ростом магнитного поля (рис 15, a, б).

Рис. 16а, б. Температурная зависимость намагниченности $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}$ Те полученная при различных режимах измерения – ZFC, FCC, FCW при магнитном поле H = 1 кЭ (a); H = 13 кЭ (б).

В $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te$, характеризующемся образце близкой К максимальной в серии критической температурой СП перехода T_c = 4 K, на зависимостях m(T) в режимах измерения FCC и FCW при некоторых значениях магнитного поля Н наблюдается уменьшение диамагнитного образца понижении температуры переходом отклика при с В парамагнитную область – парамагнитный эффект Мейснера (ПЭМ) (рис 16б).

Рассмотрим зависимости магнитной восприимчивости $\chi(T) = m(T)/H$, полученные в режиме ZFC (рис. 17) для образца ($Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te$. Уменьшение диамагнитного отклика материала увеличением с приложенного внешнего магнитного поля Н приводит к переходу в парамагнитную область в образце ($Pb_{0.4}Sn_{0.6}$)_{0.8}In_{0.2}Te при H > 7 кЭ. При понижении температуры на зависимости $\chi(T)$ наблюдается максимум вблизи H_{c2} в полях $H \ge 1$ кЭ, амплитуда максимума зависимости $\chi(T)$ возрастает Η увеличением магнитного поля переходит с И В парамагнитную область при H > 7 кЭ и T < 2.8 К.

Рис. 17. Температурная зависимость магнитной восприимчивости $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}$ Те полученная в режиме ZFC при различных магнитных полях H = 12 - 18 кЭ.

Парамагнитный эффект Мейснера в керамических сверхпроводниках интерпретируется в рамках различных моделей, таких как спонтанные сверхтоки за счет вихревых флуктуаций в сочетании с пиннингом [26], орбитальное стекло [27], наличие так называемых π - контактов [28 - 33] и Джозефсоновских контактов [34, 35]. Однако, обнаружение ПЭМ в таких материалах, как Nb [36, 37] и Al [38] привело к появлению механизма, основанного на захвате вихря внутрь сверхпроводящего образца и последующем его сжатии при понижении температуры [39 - 41]. Захват вихря может быть вызван неоднородностями [39, 40], но также может быть неотъемлемым свойством любого сверхпроводника конечного размера изза границы образца [41]. Таким образом, единой теории, объясняющей возникновение ПЭМ в низко- и высокотемпературных сверхпроводниках, нет [42].

Рис. 18. Параметры пик-эффекта (H_{peak} – поле максимума пик-эффекта) и парамагнитного отклика (H_{peak}(m(T)) – поле максимума парамагнитного отклика) в образце (Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te в зависимости от температуры.

Как видно из рис. 18, парамагнитный отклик в образце (Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te наиболее ярко выражен в области температур и

магнитных полей, где в зависимостях m(H) был обнаружен дополнительный максимум в полях вблизи H_{c2} - пик-эффект. Это дает основание предполагать, что данные эффекты могут иметь одинаковую природу их возникновения, связанную со сложным взаимодействием центров пиннинга с вихревой решеткой.

Заключение

В работе было установлено, что в полупроводниковом твердом растворе (Pb_zSn_{1-z})_{0.8}In_{0.2}Te при понижении температуры в области составов $0.1 \le z \le 0.4$ наблюдается металлический ход сопротивления и переход в СП состояние в гелиевой области температур T < 4.2 K. В (Pb_{0.5}Sn_{0.5})_{0.8}In_{0.2}Te слабый экспоненциальный рост сопротивления при уменьшении T сменяется СП переходом при T_c = 4.1 K. Увеличение содержания свинца в твердом растворе z < 0.9 приводит к увеличению энергии активации E_a, определенной из температурной зависимости сопротивления материала в соответствии с выражением $\rho = \rho_0 \exp(E_a/kT)$ в интервале температур 50 K < T < 110 K от величины E_a = 0.7 мэВ (z = 0.5) до E_a = 10 мэВ (z = 0.8).

наблюдения СП Переход ОТ состояния $(Pb_{z}Sn_{1-z})_{0.8}In_{0.2}Te$ к активационной зависимости сопротивления при понижении температуры связан со смещением примесной полосы E_{In} на фоне сплошного зонного спектра соединения, что приводит к выходу пика плотности состояний примесной полосы индия из разрешенных состояний валентной Σ -зоны тяжелых дырок и последующему смещению ее в запрещенную зону и, проводимости твердого Показано, возможно, зону раствора. ЧТО уменьшение сопротивления в образцах (Pb_zSn_{1-z})_{0.8}In_{0.2}Te c $z \ge 0.6$ при понижении Т < 4 К может быть связано с шунтированием зонной проводимости проводимостью по поверхностным состояниям.

Также в работе были изучены низкотемпературые магнитные свойства (Pb_zSn_{1-z})_{0.8}In_{0.2}Te в CП области составов в диапазоне температур T > 2 K в магнитных полей H \leq 50 кЭ. На магнитополевых зависимостях намагниченности при T < T_c наблюдается гистерезис, связанный с захватом магнитного потока поликристаллическим образцом при температурах ниже критической T < T_c. В образцах (Pb_zSn_{1-z})_{0.8}In_{0.2}Te c z = 0.1, 0.4, 0.5 было обнаружено, что в магнитных полях, близких к критическим H_{c2}, при понижении температуры T < 3 K на зависимостях

m(H) наблюдается дополнительный экстремум, интерпретируемый нами как пик-эффект. Его амплитуда в образце $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te$, достигает величины $A_{peak} \sim 6\%$ в магнитном поле H = 16.5 кЭ от максимальной величины мейснеровского отклика при H ~ 0 Э.

На температурных зависимостях намагниченности m(T) для образцов $(Pb_z Sn_{1-z})_{0.8} In_{0.2} Te$ с содержанием свинца z ≤ 0.5 , находящихся в СП состоянии, наблюдался характерный для сверхпроводников II рода диамагнитный отклик образца, уменьшающийся с ростом магнитного поля. Однако, в образце $(Pb_{0.4}Sn_{0.6})_{0.8}In_{0.2}Te$ на зависимостях m(T)наблюдался экстремум, при увеличении магнитного поля H > 7 кЭ переходящий в парамагнитную область. Данный эффект проявляется при различных режимах измерений – ZFC, FCC, FCW и наблюдается в диапазоне полей и температур, в которых был обнаружен пик-эффект. Это лает основание предполагать, что данные эффекты могут иметь природу их возникновения, одинаковую связанную co сложным взаимодействием центров пиннинга с вихревой решеткой.

Список литературы

1. Н. Х. Абрикосов, Л. П. Шелимова. Полупроводниковые материалы на основе соединений А^{IV}В^{VI}. Наука, М. (1975)

2. В. И. Кайданов, Ю. И. Равич. УФН 145, 51 (1985)

3. B. A. Volkov, L. I. Ryabova, and D. R. Khokhlov, УΦΗ 172, 875 (2002)

- 4. Yu. I. Ravich and S. A. Nemov, ΦΤΠ **36**, 3 (2002)
- 5. I.A. Drabkin and B. Ya. Mojes, ΦΤΠ **15**, 625 (1981)
- 6. В. А. Akimov, N. B. Brandt et al. Письма в ЖЭТФ 6, 1269 (1980)
- 7. K. I. Geyman, I. A. Drabkin, E. A. Mojaev et al., ΦΤΠ **11**, 846 (1977)

8. В. А. Akimov et al., Письма в ЖЭТФ 29, 11 (1979)

9. O. E. Kvyatkovsky, Phys. Stat. Sol 32 2862 (1990)

- 10. Р. В. Парфеньев, Д. В. Шамшур, С. А. Немов, ФТТ, **43**, 10 (2001)
- 11. G. S Bushmarina, et al., Phys. Stat. Sol 28 1094. (1986)

12. А. В. Березин, С. А. Немов, Р. В. Парфеньев, Д. В. Шамшур, ФТТ, **35**, 1 (1993)

13. J. P. Heremans, B. Wiendlochaac and A. M. Chamoirea, Energy Environ. Sci.,5, 5510 (2012)

14. Шамшур Д. В., Парфеньев Р. В., Черняев А. В., Немов С. А., ФТТ, **52**, 9 (2010)

15. R. Zhong, et al., Phys. Rev. B, 91, 195321 (2015)

16. R. Zhong, et al., Crystals 7, 55 (2017)

17. Н. Ю. Михайлин и др., Low Temperature Physics, 45, 2 (2019)

18. Г. О. Андрианов, и др., ЖЭТФ, 152, 6(12) (2017)

19. S. Wolgast et al., Physical Review B 88, 180405(r) (2013)

- 20. В. И. Козуб и др., Письма в ЖЭТФ, **84**, 1 (2006)
- 21. D. K. Jackson et al, Europhys. Lett., **52**, 2, (2000)

22. R. Lortz et al, Physical Review B 75, (2007)

23. D. Miu et al, Supercond. Sci. Technol. 25 p.7 (2012)

24. M. Saghir et al, Phys.Rev. B 90, 064508 (2014)

25. J. Hecher et al., Supercond. Sci. Technol. 27 075004 (2014)

- 26. P. Svelindh et al., Physica C, **162–164**, 1365–1366 (1989)
- 27. F. V. Kusmartsev, Phys. Rev. Lett. 69, 2268–2271 (1992)
- 28. D. I. Khomskii, J. Low Temp. Phys. 95, 205–223 (1994)
- 29. W. Braunisch et al., Phys. Rev. B 48, 4030–4042 (1993)
- 30. M. Sigrist, T. M. Rice, J. Phys. Soc. Jpn. 61, 4283–4286 (1992)
- 31. M. Sigrist, T. M. Rice, Rev. Mod. Phys. 67, 503–513 (1995)
- 32. D.-X. Chen, A. Hernando, Europhys. Lett. 26, 365–370 (1994)
- 33. D. Dominguez, E. A. Jagla, C. A. Balseiro, Phys. Rev. Lett. **72**, 2773–2776 (1994)
- 34. K. N. Shrivastava, Solid State Commun. 90, 589–594 (1994)
- 35. K. N. Shrivastava, Phys. Lett. A 188, 182–186 (1994)
- 36. D. J. Thompson, M. S. M. Minhaj, L. E. Wenger, J. T. Chen, Phys. Rev. Lett. **75**, 529–532 (1995)
- 37. P. Kostic et al., Phys. Rev. B 53, 791–801 (1996)
- 38. A. K. Geim et al., Nature **396**, 144–146 (1998)
- 39. A. E. Koshelev, A. I. Larkin, Phys. Rev. B 52, 13559 (1995)
- 40. A. E. Khalil, Phys. Rev. B 55, 6625–6630 (1997)
- 41. V. V. Moshchalkov, X. G. Qui, V. Bruyndoncz, Phys. Rev. B **55**, 11793–11801 (1997)
- 42. M. S. Li, Physics Reports **376**, 133 223 (2003)