Резюме проекта, выполняемого в рамках ФЦП

«Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России на 2014 – 2020 годы»

по этапу №3

Номер Соглашения о предоставлении субсидии: 14.604.21.0089

<u>Тема:</u> ««Мощные фотоэлектрические преобразователи лазерного излучения с КПД более 60% для систем лучевой энергетики»

Приоритетное направление: Энергоэффективность, энергосбережение, ядерная энергетика

<u>Критическая технология:</u> Технологии создания энергосберегающих систем транспортировки, распределения и использования энергии

Период выполнения: 27.06.2014 - 31.12.2016

Плановое финансирование проекта: 31.50 млн. руб.

Бюджетные средства 25.00 млн. руб., Внебюджетные средства 6.50 млн. руб.

<u>Получатель:</u> Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук

<u>Индустриальный партнер</u> Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С. П. Королева"

<u>Ключевые слова:</u> Эпитаксиальное выращивание, фотоэлектрическое преобразование энергии, КПД, гетероструктуры, технология, лазерное излучение

1. Цель проекта

Проект направлен на разработку технических средств для создания перспективных источников энергии на основе полупроводниковых фотоэлектрических преобразователей (ФЭП) лазерного излучения.

Основной целью проекта является разработка и создание высокоэффективных мощных (до $500~\rm BT/cm2$) фотоэлектрических преобразователей лазерного излучения на основе A3B5 с КПД ~ 50 - 60% при преобразовании лазерного излучения в диапазоне длин волн $0.78-1.68~\rm mkm$.

2. Основные результаты проекта

В ходе выполнения этапа №3 получены следующие основные научно-исследовательские результаты:

- Эскизная конструкторская документация и экспериментальная установка для исследовательских испытаний изготовленных макетов ФЭП лазерного излучения с длинами волн λ =809 нм и λ =1064 нм (размер ФЭП 2x2 см) с КПД >50% и с λ =1064 нм (1x1 см) с КПД > 35%.
- Программа и методики исследовательских испытаний макетов ФЭП лазерного излучения.
- Программа и методики исследовательских испытаний экспериментальных образцов модулей ФЭП лазерного излучения.

В результате проведённых исследований и испытаний было установлено следующее:

- Определены закономерности изменения скоростей осаждения соединений GaAs и AlAs в зависимости от температуры и потока атомов элементов III группы. Разработана технология получения макетов Φ ЭП лазерного излучения (ЛИ) для длины волны λ =809 нм.
- Исследованы особенности роста бинарного соединения InAs и твердых растворов $In_xGa_{1-x}As$ методом газофазной эпитаксии. Определены зависимости скорости осаждения слоев InAs для температур 480-700 °C. Разработана технология структур AlInGaAs/InGaAs, получены ФЭП ЛИ размером 1 см х 1 см. Монохроматический КПД макета ФЭП ЛИ (λ =1064 нм) составил 36.0% при мощности лазера 1.0 Вт.

- Предложены варианты оптимизации технологии получения фотоэлементных структур GaInAsP/InP с засветкой со стороны подложки и со стороны твердого раствора.
- Для ФЭП ЛИ на основе AlGaAs/GaAs (809 нм) площадью 4 см² достигнута эффективность преобразования $\eta = 53.5\%$. Для малоразмерных ФЭП ЛИ эффективность возрастала до 56.0%.

Результаты научно-технической деятельности, полученные в процессе выполнения этапа № 3, были представлены в виде доклада на международной конференции в Гамбурге (Германия), а также в 3-х публикациях в журналах, индексируемых в базе данных Scopus и в Web of Science.

Полученные результаты соответствуют требованиям технического задания проекта.

Научно-технические результаты, полученные в ходе выполнения этапа, являются новыми и находятся на уровне мировых достижений. Предполагаемые научно-технические решения соответствуют научно-техническому уровню, ожидаемому после 2015 года.

3. Охраноспособные результаты интеллектуальной деятельности (РИД), полученные в рамках прикладного научного исследования и экспериментальной разработки

Изобретение заявка №2015146252 от 27.10.2015 "Способ изготовления фотоэлемента на основе GaAs", РФ

4. Назначение и область применения результатов проекта

Полученные результаты предназначены для создания фотоэлектрических панелей на основе разрабатываемых ФЭП лазерного излучения как для космического, так и для наземного применения. Для наземного использования систем беспроводной передачи энергии перспективными являются фотопреобразователи лазерного излучения для длин волн 0.78 -0.84 мкм (основе AlGaAs/GaAs структур) для преобразования лазерного излучения, передаваемого в том числе по оптоволокну.

Физико-математические модели для описания процессов преобразования потоков мощного лазерного излучения в ФЭП, полученные на основании расчета полупроводниковых структур и конструкций ФЭП, обеспечивающих высокоэффективное преобразование лазерного излучения с заданной длиной волны, а также разрабатываемая технология выращивания гетероструктур ФЭП методом МОС-гидридной эпитаксии, могут быть использованы для получения ФЭП лазерного излучения, которые необходимы, в частности, как составной элемент системы передачи энергии по лазерному лучу с борта на борт космических спутников, в которых отсутствует возможность применения солнечных батарей для получения электроэнергии.

5. Эффекты от внедрения результатов проекта

Ожидаемые социально-экономические эффекты от использования товаров и услуг, созданных на основе полученных результатов заключаются в повышении производительности труда, а также снижении материало- и энергоёмкости производства.

6. Формы и объемы коммерциализации результатов проекта

Проектом предусмотрена коммерциализация — заключен Договор от 03.03.2014 г. с Индустриальным партнером Открытое акционерное общество «Ракетно-космическая корпорация «Энергия» им. С.П. Королёва» (ОАО "РКК "Энергия") о дальнейшем использовании результатов ПНИ.

7. Наличие соисполнителей

Соисполнители не привлекались для выполнения работ по проекту.

Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук

Зам. директора ФТИ им. А.Ф. Иоффе

Руководитель работ по проекту

С.В. Лебедев

В.П. Хвостиков